Phenylethanoid Glycosides from Digitalis purpurea and Penstemon linarioides with PKC α-Inhibitory Activity

Bing-Nan Zhou, ${ }^{\dagger}$ Brian D. Bahler, ${ }^{\dagger}$ Glenn A. H ofmann, ${ }^{\ddagger}$ Michael R. Mattern, ${ }^{\ddagger}$ Randall K. J ohnson, ${ }^{\ddagger}$ and David G. I. Kingston*,t
Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0212, and Research and Development, SmithKline Beecham Pharmaceuticals, P.O. Box 1539, King of Prussia, Pennsylvania 19406-0939

Received April 13, 1998

In a continuation of our search for potential tumor inhibitors from plants, it was found that the $\mathrm{CH}_{2^{-}}$ $\mathrm{Cl}_{2}-\mathrm{MeOH}$ (1:1) extracts from Digitalis purpurea and Penstemon linarioides both showed PKC α-inhibitory bioactivity. Bioassay-directed fractionation of the extract from D. purpurea yielded the new, weakly active phenylethanoid glycoside 2-(3-hydroxy-4-methoxy-phenyl)-ethyl-O-($\alpha-$-L-rhamnosyl)-(1 $\rightarrow 3$)-O-(α-L-rham-nosyl)-(1 $\rightarrow 6$)-4-O-E-feruloyl- β-D-glucopyranoside (1) together with the four known compounds cal ceol ariosideA (2), cal ceol arioside B (3), forsythiaside (4), and plantainosideD (5). The extract from P. Iinarioides yielded the three known glycosides leucosceptoside A (6), acteoside (7), and poliumoside (8), together with the iridoid plantarenaloside (9). All of the isolated compounds, except compound 9, showed inhibitory activity against $\mathrm{PKC} \alpha$ with IC_{50} values (in $\mu \mathrm{M}$) of 125 (1), 0.6 (2), 4.6 (3), 1.9 (4), 14.8 (5), 19.0 (6), 9.3 (7), and 24.4 (8).

As described in the previous paper in this series ${ }^{1}$ we have added a screen for inhibitors of protein kinase C (PKC) to our yeast assays for DNA-damaging agents, ${ }^{2}$ in as much as PKC has emerged as an attractive target for anticancer treatment. ${ }^{3}$ A search of plant extracts for inhibitors of PKC indicated that the detanninated $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ (1:1) extracts of both Digitalis purpurea L. (Scrophulariaceae) and Penstemon linarioides Gray (Scrophulariaceae) showed PKC α-inhibitory bioactivity, and therefore bioassay-directed fractionation was undertaken on both extracts.
D. purpurea is a well-known herb with a long history of medicinal use. It is the source of the important cardiac glycosides digitoxin, gitoxin, and gitaloxin and has been used medicinally for at least 200 years. ${ }^{4}$ It also contains flavonoid glycosides and an anthraquinone. ${ }^{5}$ Recently, certain phenylethanoids such as desrhamnosyl acteoside, forsythiaside, purpureaside A, and purpureaside B have been isolated from D. purpurea, and it has been reported that acteoside (verbascoside) shows PKC α-inhibitory activity. ${ }^{6}$
P. Iinarioides has been reported to contain more than 50 iridoid glycosides, ${ }^{7}$ and various phenylethanoids such as martynoside, ${ }^{8}$ orobanoside, ${ }^{9}$ stansioside, ${ }^{9}$ and acteoside ${ }^{10}$ have been isolated from other plants of this genus. As noted above, acteoside has shown PKC α-inhibitory activity and also selectively inhibited aldose reductase and formation of the 5-lipoxygenase product 15-hydroxy-5,8,11,13eicosastetraenoic acid (15-HETE) and LTB_{4} in human peripheral polymorphonuclear leukocytes, as well as showing antibacterial and cytotoxic activities. ${ }^{11}$

The extracts of both plants were subjected to partition between various organic sol vents and aqueous MeOH , and the bioactivity of each extract against PKC α was concentrated in the $\mathrm{n}-\mathrm{BuOH}$ fraction. For D. purpurea 2.52 g of crude extract gave 1.14 g of active $\mathrm{n}-\mathrm{BuOH}$-soluble material with an IC_{50} of $11.7 \mu \mathrm{~g} / \mathrm{mL}$ against $\mathrm{PKC} \alpha$, while for P . Iinarioides 2.27 g of crude extract yielded 1.27 g of $\mathrm{n}-\mathrm{BuOH}-$

[^0]soluble material with an IC_{50} of $17.1 \mu \mathrm{~g} / \mathrm{mL}$ against PKC α. Column chromatography of the $\mathrm{n}-\mathrm{BuOH}$ fraction from D . purpurea on Si gel with the solvent $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (8:2:0.1) gave seven fractions. The bioactive fraction 6 gave compound $1(4.8 \mathrm{mg})$ and plantainoside (5) (8.0 mg) by preparative TLC on RP-18 plates with the sol vent MeOH $\mathrm{H}_{2} \mathrm{O}(55: 45)$ and repeated column chromatography on Si gel with the sol vent $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (8:2:0.1). Using the same conditions, cal ceol ariside A ($2,16.8 \mathrm{mg}$), cal ceolariside $B(\mathbf{3}, 8.8 \mathrm{mg})$, and forsythiaside ($\mathbf{4}, 22.3 \mathrm{mg}$) were isolated from the bioactive fractions 2,3 , and 4 , respectively.
In similar fashion, the $n-B u O H$ fraction from P. Iinarioides was subjected to Si gel column chromatography with the sol vents $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (6:1 and 4:1). Fraction 4 yiel ded leucosceptoside A ($6,120 \mathrm{mg}, 5.2 \%$) by further Si gel column chromatography with the solvent $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ MeOH (6:1). Fraction 6 gave acteoside (7, $145 \mathrm{mg}, 6.4 \%$) on purification by polyamide column chromatography, and fraction 8 gave poliumoside ($8,62.7 \mathrm{mg}, 2.8 \%$) and plantarenal oside ($9,36.8 \mathrm{mg}, 1.6 \%$) on Si gel column chromatography with the solvent $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (8:2:0.1).

Compound $\mathbf{1}$ had the composition $\mathrm{C}_{35} \mathrm{H}_{50} \mathrm{O}_{19}$ as determined by HRFABMS. Its ${ }^{1} \mathrm{H}$ NMR spectrum, with signals at $\delta 3.88(3 \mathrm{H}, \mathrm{s}), 7.20(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.9 \mathrm{~Hz}), 6.81(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $8.2 \mathrm{~Hz}), 7.08(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.9,8.2 \mathrm{~Hz}), 6.38(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ 15.9 Hz) and $7.66(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=15.9 \mathrm{~Hz})$, and its UV spectrum, with $\lambda_{\max }$ at 289 and 330 nm , suggested the presence of a feruloyl moiety, while ${ }^{1} \mathrm{H}$ NMR signals at δ $6.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.1 \mathrm{~Hz}), 6.83(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}), 6.69$ (1 H , dd, J = 2.1, 8.1 Hz), and 2.82 ($2 \mathrm{H}, \mathrm{br} \mathrm{t}$) indicated the presence of a phenethyl moiety. Compound $\mathbf{1}$ thus belongs to the class of phenylethanoid natural products. The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1}$, in addition to signals attributable to the phenethyl and the feruloyl groups, contained signals for 18 carbons corresponding to the carbohydrate moiety. The signals in the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1}$ for the anomeric protons at $\delta 5.19(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.4 \mathrm{~Hz}), 4.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.5$

Table 1. NMR Data of Compound 1, Poliumoside (8), and Martynoside (10)

	compound 1		poliumoside (8)	martynoside (10) ${ }^{\text {a }}$
	$\delta_{\mathrm{H}}(\mathrm{J}$ value in Hz$)$	$\delta_{\text {c }}$	$\delta_{\text {C }}$	$\delta_{\text {c }}$
aglycon				
A-1		132.8	131.4	132.7
A-2	6.73 (d, 2.1)	117.1	117.1	117.0
A-3		147.6	146.1	147.1
A-4		147.3	144.7	147.2
A-5	6.83 (d, 8.1)	112.9	116.3	112.8
A-6	6.69 (dd, 2.1, 8.1)	121.2	121.3	121.1
A-7	2.82 (dt)	72.3	72.3	72.2
A-8		36.6	36.5	36.5
Caffeoyl-				
C-1		127.7	127.6	127.5
C-2	7.2 (d, 1.9)	111.8	115.2	111.9
C-3		149.4	146.8	150.4
C-4		150.8	149.8	149.1
C-5	6.81 (d, 8.2)	116.5	116.5	116.6
C-6	7.08 (dd, 1.9, 8.2)	124.4	123.2	124.2
C-7	7.66 (d. 15.9)	148.0	148.0	147.8
C-8	6.38 (d, 15.9)	115.1	114.7	115.1
-COOR		168.0	168.0	168.3
Glucosyl-				
G-1	4.38 (d, 7.9)	104.4	104.2	104.2
G-2		76.2	76.2	76.2
G-3		81.5	81.6	81.5
G-4		70.4	70.6	70.6
G-5		74.7	74.5	76.6
G-6		67.6	67.5	62.4
Rhamnosyl-1				
Rh'-1	5.19 (d, 1.7)	103.0	103.1	103.0
Rh'-2		72.3	72.4	72.3
Rh'-3		72.1	72.1	72.0
Rh'-4		73.9	73.9	73.8
Rh'-5		69.9	70.4	70.4
Rh'-6		18.4	18.4	18.4
Rhamnosyl-2				
$\mathrm{Rh}^{\prime \prime}-1$	4.62 (d, 1.5)	102.3	102.3	
Rh' -2		72.3	72.3	
Rh" -3		72.0	72.0	
Rh' -4		73.7	73.7	
Rh' -5		69.9	69.9	
Rh" -6		18.0	18.0	
$\mathrm{CH}_{3} \mathrm{O}$-(Caff-3)	3.81 (s)	56.5		56.5
$\mathrm{CH}_{3} \mathrm{O}-(\mathrm{Ag}-4)$	3.88 (s)	56.4		56.5

a Data from Miyase et al. 12c.
$\mathrm{Hz})$, and $4.38(1 \mathrm{H}, \mathrm{d}, 7.9 \mathrm{~Hz})$ and for the terminal methyl groups at $\delta 1.09(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.1 \mathrm{~Hz})$ and $1.19(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ 6.3 Hz) indi cated that 1 contained two rhamnosyl units and one glucosyl unit.

Comparison of the NMR data of $\mathbf{1}$ with those of the known compound poliumoside (8) (Table 1) indicated that both carbon and proton chemical shifts of the sugar part of $\mathbf{1}$ were very similar to those of poliumoside (8). Compound 1 also had very similar ${ }^{13} \mathrm{C}$ NMR data to those of martynoside 10,12 after making adjustments for the fact that $\mathbf{1 0}$ has one rhamnose less than compound 1. A careful comparison of the ${ }^{13} \mathrm{C}$ NMR data of $\mathbf{1}$ with the data of $\mathbf{1 0}$ showed that the only significant differences occurred at G_{5} and G_{6} in 1, thus suggesting that the additional rhamnosylation in $\mathbf{1}$ took place at the G_{6} position of 10. ${ }^{12}$ The longrange couplings between $\mathrm{H}-\mathrm{G}_{4}\left(\delta_{\mathrm{H}} 4.99\right)$ and -COOR (δ_{C} 168.0) in the HMBC spectrum of 1 indicated that the feruloyl group was connected at G_{4} via an ester linkage, and the long-range couplings between $\mathrm{H}-\mathrm{Rh}_{1}\left(\delta_{\mathrm{H}} 5.19\right)$ and $\mathrm{C}-\mathrm{G}_{3}\left(\delta_{\mathrm{C}} 81.5\right)$ and between $\mathrm{H}-\mathrm{Rh}^{\prime}{ }_{1}\left(\delta_{\mathrm{H}} 4.62\right)$ and $\mathrm{C}-\mathrm{G}_{6}$ ($\delta_{C} 67.6$) demonstrated that one rhamnosyl group was located at the G_{6} and the other at the G_{3} position. The correlation between $\mathrm{H}-\mathrm{G}_{1}\left(\delta_{\mathrm{H}} 4.38\right)$ and $\mathrm{C}-\alpha\left(\delta_{\mathrm{C}} 72.3\right)$ indicated the location of the α-phenylethanyl glucoside moiety.

In a NOESY spectrum, NOE correlations observed between the $\mathrm{CH}_{3} \mathrm{O}-$ signal at $\delta_{\mathrm{H}} 3.81$ and the proton signal at $\delta_{H} 7.20(1 \mathrm{H}, \mathrm{d}, 2.1)$ showed this $\mathrm{CH}_{3} \mathrm{O}-$ group to be located at theC-3 position of the feruloyl moiety. Similarly, the other $\mathrm{CH}_{3} \mathrm{O}$ - group could be assigned to the C-4 position of the phenethyl group by the correlation between the $\mathrm{CH}_{3} \mathrm{O}$ - signal at $\delta_{\mathrm{H}} 3.88(3 \mathrm{H}, \mathrm{s})$ and proton signal at $\delta_{\mathrm{H}} 6.83(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz})$. Based on these data, 1 could be assigned as 2-(3-hydroxy-4-methoxyphenyl)-ethyl-O-(α -L-rhamnosyl)-(1 $\rightarrow 3$)-O-($\alpha-$ L-rhamnosyl)-(1 $\rightarrow 6$)-4-O-E-feruloyl- β-D-glucopyranoside.

Compounds 2-9 were assigned as calceolarioside $A,{ }^{13}$ cal ceol arioside $B,{ }^{13}$ forsythiaside, ${ }^{14}$ plantainoside D, ${ }^{15}$ leucoceptoside, ${ }^{12}$ acteoside, $, 9,12,13,16$ poliumside, ${ }^{17}$ and plantarenaloside, ${ }^{17}$ respectively, by comparison of their ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DQCOSY, HMQC, HMBC, and NOE SY spectra with literature data. They also showed the same HRFABMS, $[\alpha]_{D}$, UV, and IR data with values in the literature. Calceol ariosideA and plantarenal oside were al so identified by direct comparison with authentic samples. Plantainoside D was isolated for the first time from P. Iinarioides.
All of the isolated compounds except compound 9 showed inhibitory activity against PKC α, with I C_{50} values $(\mu \mathrm{M})$ of 125 (1), 0.6 (2), 4.6 (3), 1.9 (4), 14.8 (5), 19.0 (6), 9.3 (7) and 24.4 (8). The PKC α inhibitory bioactivities of 1-6 and 8 have not been reported previously in the literature.

Experimental Section

General Experimental Procedures. Optical rotations were recorded with a Perkin-Elmer 241 Polarimeter. UV spectra were measured on a Beckman DU-50 instrument and IR spectra on a Nicolet Impact 400 spectrophotometer. NMR spectra were recorded in $\mathrm{CD}_{3} \mathrm{OD}$ on a Varian Unity 400 NMR instrument at 399.951 MHz for ${ }^{1} \mathrm{H}$ and 100.578 MHz for ${ }^{13} \mathrm{C}$, using standard Varian pulse sequences. Exact mass measurements were obtained at the Nebraska Center for Mass Spectrometry. Other conditions were as previously described. ${ }^{2}$

Plant Material. Stems, leaves, and fruit of Digitalis purpurea L. (Scrophulariaceae) were collected on Norfolk Island in May 1965 (PR-9503, B633363), and the whole plant of Penstemon Iinarioides Gray (Scrophulariaceae) was collected in New Mexico. in J une 1964 (PR-8513, B632569). Voucher specimens are on deposit in the Herbarium of the National Arboretum, Agricultural Research Service, U. S. D. A., Washington, DC. The dried samples were extracted with CH_{2-} $\mathrm{Cl}_{2}-\mathrm{MeOH}(1: 1)$ to give 2.52 g of D . purpurea extract as HEX 652 and 2.27 g of P . Iinarioide extract as HEX 1216.

Isolation of Phenylethanoids 1-5. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ extract HEX $652(2.52 \mathrm{~g})$ from D. purpurea was passed through a polyamide column (80 g , ICN Pharmaceuticals, Inc., Eschwege, Germany) to yield a detanninated fraction (2.16 g , PKC $\alpha \mathrm{IC}_{50}=78 \mu \mathrm{~g} / \mathrm{mL}$). After partition of the detanninated fraction between EtOAc and aqueous MeOH , followed by partition of the aqueous MeOH fraction between $\mathrm{H}_{2} \mathrm{O}$ and
$\mathrm{n}-\mathrm{BuOH}$, a bioactive $\mathrm{n}-\mathrm{BuOH}$ fraction ($1.14 \mathrm{~g}, \mathrm{PKC}_{\alpha} \mathrm{IC}_{50}=12$ $\mu \mathrm{g} / \mathrm{mL}$) was obtained. This was subjected to col umn chromatography on Si gel (60 g) with elution by $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (8:2:0.1) to give seven fractions after combination of similar components as determined by TLC. Purification of active compounds from the bioactive fractions was achieved by preparative TLC on RP-18 with $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(55: 45)$ followed by column chromatography on Si gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ ($8: 2: 0.1$). Fraction 2 yielded calceolarioside A ($2,16.8 \mathrm{mg}$, $0.67 \%)$; fraction 3 gave calceolarioside B ($3,8.8 \mathrm{mg}, 0.35 \%$); fraction 4 gave forsythiaside (4, 22.3 mg, 0.89%); fraction 6 gave plantainoside D ($5,8.0 \mathrm{mg}, 0.32 \%$) and the new natural product $\mathbf{1}(4.79 \mathrm{mg}, 0.19 \%)$. The structures of compounds 2-5 were assigned by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, DQCOSY, HMQC, HMBC, and NOESY spectra, and by HRFABMS, $[\alpha]_{D}$, UV, and IR. Cal ceolarioside A was also identified by direct comparison with an authentic sample. ${ }^{13}$

Isolation of Phenylethanoids 6-9. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ (1:1) extract from P. linarioides was partitioned between EtOAc and aqueous MeOH , and the active aqueous MeOH fraction was then partitioned between $\mathrm{H}_{2} \mathrm{O}$ and n-BuOH. The bioactive n -BuOH fraction ($1.27 \mathrm{~g}, 56.1 \%$, with $\mathrm{IC}_{50}=17.1 \mu \mathrm{~g} /$ mL against $\mathrm{PK}(\alpha)$ was subjected to column chromatography on Si gel with the solvent $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ (6:1 and 4:1) to give 10 fractions, of which fractions 4, 6, and 8 showed $\mathrm{PKC} \mathrm{\alpha-}$ inhibitory activity. Leucosceptoside A ($6,120 \mathrm{mg}, 5.2 \%$) was isolated from fraction 4 by further Si gel column chromatography with the sol vent $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ (6:1). Acteoside (7, 145 $\mathrm{mg}, 6.4 \%$) was purified by polyamide col umn chromatography of fraction 6 , and poliumoside ($8,62.7 \mathrm{mg}, 2.8 \%$) and plantarenaloside ($9,36.8 \mathrm{mg}, 1.6 \%$) were obtained by Si gel column chromatography of fraction 8 with the sol vent $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-$ $\mathrm{H}_{2} \mathrm{O}$
(8:2:0.1). The structures of compounds $\mathbf{6 - 8}$ were assigned by comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, NOESY, HMQC and HMBC spectra, and UV, MS, and $[\alpha]_{D}$ values with literature data; all data were identical to those published. ${ }^{10,12,14,15,19}$ Plantarenaloside (9) was identified by direct comparison with an authentic sample (co-TLC, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR).

Compound 1: light yellow gum-like substance, $[\alpha]^{23}{ }_{D}-60.4^{\circ}$ (c $0.22, \mathrm{MeOH}$), UV (MeOH) $\lambda_{\text {max }}(\log \epsilon) 218$ (4.06), 235 sh (3.98), 289 (3.85), and 330 (4.05) nm; IR v max (KBr) 3600$3100(\mathrm{OH}), 1720$ (conjugated COOR), $1600\left(>\mathrm{C}=\mathrm{C}<\right.$); ${ }^{1 \mathrm{H}}$ and ${ }^{13} \mathrm{C}$ NMR data see Table 1; FABMS m/z 805.3077 (calcd for $\mathrm{C}_{37} \mathrm{H}_{50} \mathrm{O}_{19} \mathrm{Li}, 805.3106$).

PKC α-Inhibitory Bioassay. Bioassay for inhibition of PKC was carried out as described previously. ${ }^{1}$

Acknowledgment. This work was supported by a National Cooperative Drug Discovery Group award to the University of Virginia (U19 CA 50771, Dr. S. M. Hecht, Principal Investigator), and this support is gratefully acknowledged. The authors thank Dr. Corrado Galeffi, Laboratorio di Chimica del Farmaco, Rome, Italy, for an authentic sample of calceolarioside A. Mass spectra were obtained by Mr. Kim Harich, Virginia Polytechnic Institute and State University, and the Nebraska Center for Mass Spectrometry.

References and Notes

(1) Lee, K. K.; Bahler, B. D.; H ofmann, G. A.; Mattern, M. R.; J ohnson, R. K.; Kingston, D. G. I. J . Nat. Prod. 1998, 61, 1407-1409.
(2) For previous papers in this series see (a) Wu, C.; Gunatilaka, A. A. L.; McCabe, F. L.; J ohnson, R. K.; Kingston, D. G. I. J. Nat. Prod. 1997, 60, 1281-1286. (b) Valente, L. M. M.; Gunatilaka, A. A. L.; Kingston, D. G. I.; Patitucci, M. L.; Pinto, A. C. J . Nat. Prod. 1997, 60, 478-481. (c) Wijeratne, E. M. K.; Gunatilaka, A. A. L.; Kingston, D. G. I.; Haltiwanger, R. C.; Eggleston, D. S. Tetrahedron 1995, 51, 7877-7882. (d)J ohnson, R. K.; Bartus, H. F.; Hofmann, G. A.; Bartus, J. O.; Mong, S.-M.; Faucette, L.; McCabe, F. L.; Chan, J . A.; Mirabelli, C. K. In: In Vitro and in Vivo Models for the Detection of New Antitumor Drugs; Hanka, L. J., Kondo, T., White, R. J., Eds.; Organizing Committee of the 14th International Congress of Chemotherapy: Kyoto, J apan, 1986; pp 15-26. (e) Gunatilaka, A. A. L.; Samaranayake, G.; Kingston, D. G. I.; H ofmann, G. A.; J ohnson, R. K. J. Nat. Prod. 1992, 55, 1648-1654. (f) Gunatilaka, A. A. L.; Kingston, D. G. I.; J ohnson, R. K. PureAppl. Chem. 1994, 66, 22192222.
(3) (a) Blackshear, P. J.; Nairn, A. C.; Kuo, J. F. FASEB J. 1988, 2, 29572969. (b) Basu, A. Pharmacol. Ther. 1993, 59, 257-280.
(4) (a) Tyler, V. E.; Brady, L. R.; Robbers, J. E. Pharmacognosy, 9th ed.; Lea and Febiger: Philadelphia, 1988; pp 164-169. (b) Stoll, A.; J ucker, E. In Moderne Methoden der Pflanzenanalyse; Paech, K., Tracey, M. V., Eds.; Springer-Verlag: Berlin, 1955; Band III, pp 205268. (c) Dean, F. M. Naturally Occurring Oxygen Ring Compounds, Butterworth: New York, 1963.
(5) (a) Paris, R. Compt. Rend. 1954, 238, 932-934. (b) Clerc, A.; Paris, R. Compt. Rend. Soc. Biol. 1940, 133, 46-48. (c) Brew, E. J. C.; Thomson, R. H. J. Chem. Soc. (C), 1971, 2007-2010.
(6) Matsumoto, M.; Koga, S.; Shoyama, Y.; Nishioka, I. Phytochemistry 1987, 26, 3225-3227.
(7) Abdel-K ader, M. S. Chemical Studies of Some Plants Belonging to the Families: Solanaceae, Zygophyllaceae, Asclepiadaceae, and Scrophulariaceae, Ph.D. Thesis, Alexandria University, Alexandria, Egypt, 1994; pp 32-73.
(8) Teborg, D.; J unior, P. Planta Med. 1989, 55, 474-476.
(9) (a) Gering-Ward, B.; J unior, P. Planta Med. 1989, 55, 75-78. (b) Gering-Ward, B.; J unior, P. Planta Med. 1989, 55, 75-78.
(10) (a) Lira-Rocha, A.; Diaz, R.; J imenez, C. J. Nat. Prod. 1987, 50, 331332. (b) Gering, B.; Wichtle, M. J . Nat. Prod. 1987, 50, 1048-1054.
(11) (a) J imenez, C.; Riguera, R. Nat. Prod. Rep. 1994, 11, 591-606. (b) Kimura Y.; Okuda, H.; Nishibe, S.; Arichi, S. Planta Med. 1998, 148153.
(12) (a) Gafner, S.; Wolfender, J .-L.; Nianga, M.; Hostettmann, K. Phytochemistry 1997, 44, 687-690. (b) Nishimura, H.; Sasaki, H.; Inagaki, N.; Chin, M.; Mitsuhashi, H. Phytochemistry 1991, 30, 965969. (c) Miyase, T.; Koizumi, A.; Ueno, A.; Noro, T.; K uroyanagi, M.; Fukushima, S.; Akiyama, Y.; Takemoto, T. Chem. Pharm. Bull. 1982, 30, 2732-2737.
(13) Nicoletti, M.; Galeffi, C.; Messana, I.; Garbarino, J. A.; Nyandat, E.; Marini-Bettolo, G. B. Gazz. Chim. Ital. 1986, 116, 431-433.
(14) (a) Endo, K.; Takahashi, K.; Hikino, H. Heterocycles 1981, 16, 13111314. (b) Nishiki, S.; Okabe, K.; Tsukamoto, H.; Sakushima, A.; Hisada, S. Chem. Pharm. Bull. 1982, 30, 1048-1050.
(15) Miyase, T.; Ishino, M.; Akahori, C.; Ueno, A.; Ohkawa, Y.; Tanizawa, H. Phytochemistry 1991, 30, 2015-2018.
(16) Andary, C.; Wylde, R.; Laffite, C.; Privat, G.; Winternitz, F. Phytochemistry 1982, 21, 1123-1127.
(17) Andary, C.; Wylde, R.; Heitz, A.; Rascol , J . P.; Laffite, C. Phytochemistry 1985, 24, 362-364.

NP980147S

[^0]: * To whom enquiries should be addressed: Tel.: (540) 231-6570. Fax: (540) 231-7702. E-Mail: dkingston@vt.edu.
 + Virginia Polytechnic Institute and State University.
 † SmithKline Beecham Pharmaceuticals.

